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1.  Introduction  
 
Semiconductors are characterized by their temperature 

dependence of the electrical conductivity σ. Most 
semiconductors exhibit an exponential temperature 
dependence  

 )exp(0 kT
W

−= σσ          (1) 

 
where σo is a constant and W – activation energy [1-6].  

If the logarithm of the conductivity σ is plotted on the 
ordinate against the reciprocal of the temperature T on the 
abscissa, a straight line is obtained whose slope determines 
the activation energy W. The point intersection  of this line 
with  the ordinate axis yields the value of the pre-
exponential factor, σo. 

For many classes of materials, especially organic 
semi-insulators, chalcogenide glasses, and amorphous 
silicon samples experimental evidence suggests that a 
correlation exist between the activation energies and pre-
exponential factors of the form [7-23] 

 
 0 00ln lnbWσ σ= +  (2a) 

 
where b and  σoo are constants. This relation can also be 
written as  

 )exp(
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where  
 

 b = 1/kTo  (3a) 
 

The parameter  

 
EMN = kTo                                        (3b) 

 
is often called the Meyer-Neldel characteristic energy. 
From relations (3a, 3b) it follows that b = 1/EMN. 

The relation (2b, 3) gives the dependence of the  pre-
factor σo on the activation energy W and represents the 
Meyer-Neldel empirical rule (called also the compensation 
rule). The constant σoo used to be called the Meyer-Nedel 
pre-exponential factor.  

For the electrical conductivity of the above mentioned 
materials it holds that  
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This rule is valid in disorder materials even when W is 

varied by doping, by surface absorption, by illumination of 
samples or by preparing films under special conditions.  
This rule has also been observed with liquid 
semiconductors and fullerens. Moreover, the validity of 
the MN rule has been reported with chalcogenide glasses. 
In the case of  glass alloys this rule was observed when W 
varied with a change of their composition. The electrical 
conductivity in the dark was measured as a function of 
temperature for this purpose. In works [7, 9,10,14] the 
change of the activation energy W was obtained by the 
influence of an electric field or by light. 

The MNR was first described by W. Meyer 
and H. Neldel in 1937 [16]. Up to now there does not exist 
a generally accepted theory explaining satisfactorily the 
MN rule. 

Shimakawa and Abdel-Wahao [24] reported an 
observation of the MNR with different chalcogenide 
glasses. They found the following  correlation between 
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00σ  and EMN : 

MNEqp .ln 00 +=σ                         (5) 
 

Here p and q are constants. This relation between the 
Meyer-Neldel pre-factor σoo and Meyer-Neldel energy 
EMN  has become  known as "further MNR".  This problem 
was dealt with [25-34]. 

In the present paper, we intend to explain the MNR 
and the “further MNR” for chacogenide glasses. The 
explanation, concerning a disorder semiconductor, is based 
on the barrier-cluster model. The basic assumption of this 
model is that recombinant electron transitions from 
energies above the forbidden gap to energies in the 
valence band are accompanied with emitting a series of 
phonons (each with the same energy ∆E). The total energy 
of these phonons is equal to the width of the forbidden gap 
of the semiconductor. The number of the phonons emitted 
during the recombination process is higher if one chooses 
a wider forbidden gap. The total probability of the multi-
phonon emission decreases with the growth of the number 
of the phonons. Consequently, the recombination 
probability of carriers decreases with growth of the width 
of the forbidden gap. The decrease in the recombination 
probability causes an increase of the equilibrium 
concentration of free electrons in the conduction band 
which means an increase of the electrical conduction. In 
this sense it is essentially possible to interpret the electrical 
conductivity in the agreement with the NMR. 
 

 
 

Fig. 1  Electronic spectrum of chalcogenide glass 
 
 

The “further MNR” takes into account the fact that – 
if we explain it from the viewpoint  of our barrier-cluster 
model – the phonons produced with the energy ∆E during 
the recombinsation process are intensely absorbed by free 
electrons with energies corresponding to a low-mobility 
sub-band inside the conduction band (i.e. in an interval 
where potential-energy barriers have to be considered).  

Owing to the presence of the barriers, the electrons 
undergo a strong interaction with the phonons and this 
implies a considerable absorption of the phonons of the 
“recombination” origin. In the transport of electrons in the 
lower part of the conduction band, we have to respect a 
tunnelling through the barriers. Owing to the absorption of 
the “recombinant” phonons, some free electrons go over to 

higher energy levels, and this is connected with an 
increase of the tunnelling probability. This causes a 
remarkable enhancement of the mobility of electrons in 
this sub-band. We present a mathematical expression for 
the electrical conductivity of the disordered semiconductor 
in agreement with the empirical relation based on the 
“further MNR”. 

 
2. Barrier-cluster model of non-crystalline  
    semiconductors 
 
2.1  Barrier-cluster model – basic information 
 
The barrier-cluster model assumes that an amorphous 

semiconductor consists of microscopic regions separated 
from each other by potential barriers. [35-46]. The 
microregions are interpreted as clusters in this model.  The 
model is based on the idea that some low-dimensional 
covalent systems, e.g. chalcogenides, could form special 
configurations (similar to fullerenes or nanotubes) – 
clusters.  Cluster structures of chalcogenide glasses, and 
their physical properties, were studied in [47-51]  using 
computer’s simulations. The concept of clusters enable to 
explain some important properties of chalcogenide glasses, 
such as the absence the EPR signal, as well as X- ray 
examination results. 

The potential barriers impede (restrict) the transition 
of low energy conduction electrons from one region to 
another (Fig. 1,2). Such electrons behave in regions 
between barriers in a similar way as electrons do in a 
crystal. The potential barriers can be drawn inside the 
conduction (or valence) band of an amorphous material as 
objects separating individual localized energy states at the 
edge of the band.  

The electron levels between barriers, due to the small 
dimensions of the inter-barrier  regions, exhibit a distinct 
discrete character. At the lower margin of the conduction 
band, a sub-band with carriers of low average mobility 
(µ1) is created. The states with energies above the peaks of 
barriers are delocalized. They create a sub-band with a 
high average mobility (µ2). Thus, it is clear that the 
activation energy of an amorphous material should not be 
defined by one value. At higher temperatures, it is 
determined substantially by the height of the potential 
barriers. At lower temperatures, however, the transport in 
a region below the peaks of barriers may dominate, and 
the corresponding activation energy will obviously be 
lower than its hight temperature value. Quite a similar 
situation occurs at the edge of the valence band. 

 
2.2.   Optical  absorption 
 
The potential barriers influence significantly the optical 

absorption at the optical absorption edge. We have to 
consider a strong electron-phonon interaction, which 
implies that an electron can also take the energy of a phonon 
at the optical transition and thus, the total energy taken by 
an electron equals the sum of the photon and phonon 
energies. This enables to explain the existence of 
exponential tails at the optical absorption, which penetrate 
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deeply inside the forbidden band of the semiconductor 
[35-46]. Another important factor - as far as the influence 
of barriers on optical phenomena is concerned - is that the 
absorption of light in the region of the absorption edge at 
low temperatures is usually connected with a tunneling of 
carriers through potential barriers. Thus, the absorption 
process is influenced by the barriers.  

Employing this idea we can explain successfully not 
only the creation of exponential tails at the optical 
absorption edge, but also their temperature dependences 
both at high and at low temperatures [36, 45, 46]. 

The optical absorption in most crystalline solids is 
characterized by a sharp edge of the absorption band. The 
absorption band near its border in the case of non-
crystalline semiconductors is smeared out and creates a tail 
extending deeply into the forbidden band. As a rule the 
profile of the tail  is exponential. The exponential tails at 
high enough  temperatures often fit Urbach´s formula. The 
slope of the tails changes with a temperature decrease.  At 
lower temperatures, the slope of the tails ceases to vary 
with a temperature decrease. However, a certain parallel 
shift towards lower absorption is observed. 

 

 
 

Fig. 2 Electronic spectrum of a non-crystalline 
semiconductor and optical transition at some 
 higher (left) and lower (right) temperature 

 
 
2.3 The exponential tail 
 
High temperature range: The starting point in the 

following discussion is an assumption that the potential 
barriers in non-crystalline semiconductors under proper 
conditions enable to explain the absorption of light with 
phonons participating in the energy exchange [35-46]. We 
assume that an electron in the optical transition receives 
not only the energy hf of a photon but also the phonon 
energy  Wphon (Fig. 2).  Thus, the whole received energy is 
 

hf  + Wphon                                      (6) 
 
where Wphon is the energy acquired from a phonon “field”. 
The quantity hf is given by the wavelength of the 
radiation, while Wphon has a statistical character. 

In principle, a photon can be absorbed only when its 
energy is sufficient to cause a transition of the electron 

into the conduction band. However it should be taken into 
account, that optical transitions on the energy levels lying 
just near the tops of barriers will dominate at higher 
temperatures. In this case, the probability of transition 
within a single localized region is small. The levels in 
adjacent micro regions offer more possibilities of 
combination. However, one has to consider the tunneling 
of electrons through the barriers.  

Under these assumptions, the transitions to levels just 
below the barrier peaks will be more probable for two 
reasons. The transitions to lower levels are less significant 
since the a small tunneling probability is small. The 
second reason consists in the strong electron-phonon 
interaction in the presence of the barriers. The number of 
electrons that can acquire advantageous energy from 
a phonon field depends on the temperature. The number of 
electron transitions during an irradiaton of the material by 
„low energy“ photons (and thus, also the coefficient of 
optical absorption α) is directly proportional to the phonon 
concentration corresponding to the minimum energy 
needed for the transition. For the absorption coefficient, 
we can writte [36]. 

 
α ~exp(hf/2kT)                                  (7) 

 
or, for a given (constant) temperature 
 

ln α  ~  hf + const                            (8) 
 

This is a mathematical expression of an exponential 
tail of the optical absorption [1,2]. However, the slope of 
the tails is also temperature dependent. Formula is of the 
same kind as  Urbach's formula.  

Low temperature range: At low temperatures, only 
photons with sufficient energy can be absorbed in the 
material. There are not enough phonons with sufficiently 
high energies to realize the high-temperature mechanism. 
The optical transition of an electron can be virtually 
divided into two parts [36]. The first (Fig. 2) is a vertical 
transition onto an energy level inside its own localized 
region; the second represents a (horizontal) tunneling 
transition onto a level in an adjacent inter-barrier region. 
Thus, absorption of a photon in a low-temperature 
mechanism is connected with the tunneling of the electron 
through a potential barrier. The barrier model explains in 
this case the temperature dependent parallel shift of the 
exponential tails [36] 

According to [35, 43,45, 46] the probability p of a 
single tunneling of an electron across a parabolic barrier is 
proportional to the expression 

 
 p ~ exp [−A (2W + Wo − (hf  + CT))]         (9) 

                    p ~ exp (A (hf + CT)) 
 

A similar relation will be valid for the optical 
absorption coefficient α, so that  
 
 α ~ exp (A (hf + CT)) 
 

In this way, not only the existence of exponential tails 
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of α at low temperatures can be clarified, but also their 
parallel temperature shift [35-46]. The barrier-cluster 
model allows to elucidate also other optical phenomena,  
including electroabsorption, photo-conductivity and 
photoluminesence, without an a priori consideration of 
exponential tails of the state density inside the forbidden 
gap of the disordered semiconductor. It allows also to 
explain the MNR. 

 
3. The explanation of the meyer-neldel rule in  
     chalcogenide glasses 
 
We assume that the activation energy of a disordered 

semiconductor is a clue parameter in the theory of the 
recombination process of current carriers. We will show 
than an increase of the activation energy of a non-
crystalline semiconductor lessens the probability of the 
recombination of the carriers. This increase necessarily 
affects the equilibrium concentration of the conduction 
electrons (carriers) and subsequently the electric 
conductivity σ of the semiconductor. We will obtain 
theoretically a relation for σ identical with what has been 
known as the empirical Meyer-Neldel rule. 

 
3.1 Dependence of conductivity s on activation  
       energy W 
 
The barrier-cluster model assumes that there are no 

energy levels of significant concentration in the forbidden 
band of a non-crystalline semiconductor. 

A transition of an electron from the conduction to 
valence band in a non-crystalline semiconductor proceeds 
predominantly by some production of phonons. The total 
energy of produced phonons corresponds to that one 
released in electron transitions. Further we shall assume 
that in a substance under consideration production of 
phonon with an  average energy  ΔE sominates. It means 
that production of other phonons is negligible. The energy 
2W  gained during the transition of an electron from the 
conduction to valence band is used up in the production of 
n phonons. As we assume  that each of them has energy 
ΔE, we write  2W = nΔE or 

 
n = 2W/ΔE                                (10) 

 
Let w1 be the probability of producing one phonon of 

energy ΔE. The probability wn of producing n phonons of 
this same energy (due to the electron – lattice interaction) 
will be 
 

 wn = (w1)n (11) 
 
If we write down the probability w1 as  
 

 w1 = exp(-ε1)  (12) 
 
where ε1  is a positive value, then probability wn can be 
written as 
 

 wn = exp(-nε1) = exp(-ε12W/ΔE) = exp(-bW)  (13) 

where the constant b is given by 
 

 b =  2 ε1/ΔE (14) 
 

Relation (13) gives in fact the probability of a 
recombination; it means the transition probability of an 
electron from the  conduction to valence band. This is 
proportional to the probability of producing  n phonons, 
i.e. proportional to the exp(-bW). With an increase of the 
activation energy, the probability of the recombination 
according to (13) exponentially decreases.  

 
3.2 Equilibrium concentration of conduction  
       electrons 
 
The equilibrium concentration n of the conduction 

electrons in a semiconductor is a result of two opposite 
processes: the a process of generation and the process of  
the recombination of carriers. In the equilibrium state it 
holds 

 
 (dn/dt)gen = (dn/dt)recom (15) 

 
The number of free electrons generated during a unit time 
is given as  
 

  (dn/dt)gen =  G =  C1exp(-W/kT) (16) 
 
where C1 is a constant. 

For the recombination process we suppose that the 
relation 
 

  (dn/dt) recom =  R = n.C2 exp(- bW)  (17) 
 
is valid. Here C2 is also a constant. The number of 
recombinations per unit time is proportional to the number 
n of the electron – hole (e-h) pairs as well as to the 
probability (13) production n phonons at the electron 
transition. In the equilibrium,  R = G, so that 
 

 C1 exp(-W/kT) = n.C2 exp(- bW)  (18) 
 

From this relation, it follows for equilibrium 
concentration of free carriers n that 
 

 n =  Coo exp(bW) exp(-W/kT) (19) 
 
where Coo is determined by the constants C1 and C2. 
 

3.3  Electrical conductivity 
 
It is known that the electrical conductivity σ is 

proportional to n: σ ~  n. If the mobility of carriers is 
independent of the activation energy W, one can write with 
respect to (19   14) the relations 
 

 σ = σoo.exp(bW) exp(-W/kT)  (20) 
 
or 

 σ =  σo(W) exp(-W/kT)  (21) 
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where σoo  is  a constant and   
 

 σo(W) = σoo exp(bW)  (22a) 
 
If we put 

 b = 1/kTo   (22b) 
 
the relation (20) takes the form which is identical with 
dependence (4) 
 

 σ ~ σoo exp(W/kTo) exp(-W/kT)  (23) 
 
The relation (22) acquires the form 
 

 σ o ~ σ oo exp(W/kTo) (24) 
 
which expresses the Meyer-Neldel rule (2b...3).  
 
 

4.  YM model of „further MNR“ 
 
Soon after the discovery of the „further MNR“ by 

Shimakawa and Abdel-Wahao [24] in different systems of 
chalcogenide glasses, similar strong correlation between 
the values of σoo and EMN, namely 

 
 MNEqp .ln 00 +=σ  (25a) 

 
was observed by Wang and Chen [25] for C6o films at 
different stages of the growth process and at different gate 
voltages of the field effect transistor. It has also been 
reported in a-Si:H produced by different techniques [26]. 
Recently, Mehta, Kumar and co-workers reported the 
"further MNR" in various chalcogenide glasses paying 
heed to thermally activated photoconductíon, high-field 
conduction, and non-isotermal crystallization  [27-31]. The 
correlation between 00σ  and EMN is explained in [32-34] 
by the multiple excitations associated with the phonon 
energy ΔE, as described above. 

To explain the puzzle about the „further MNR“ Yelon 
and Movaghar proposed a YM model [32].   According to 
this model, the MNR arises naturally for kinetic processes 
in which  ΔE is the energy of a kinetic barrier and for 
which ΔE is large compared to the energies of the 
excitations which contribute to the activation, as well as to 
kT. Yelon and co-workers suggest that optical phonons are 
the source of the excitatíon energy in such a process,  
showing the "further MNR". It is assumed that many 
phonons are involved in the trapping and de-trapping of 
electrons, either by a cascade or multi-phonon process. 
Yelon and Movaghar explained the MNR with an entropy 
term, which may change the pre-factor by many orders of 
magnitude. It applies equally well to crystalline and 
amorphous materials. 

Emin [52] presented an extensive calculation of the 
optical – phonon assisted transition rates for a non-
adiabatic hopping of electrons in a solid. He calculated the 
jump rates, associated d.c. conductivity, a.c. conductivity, 
and electric-field dependence of the d.c. conductivity, for a 

crystal in the strong-coupling small-polaron regime. He 
found that these transport properties manifest a 
qualitatively different behavior in the case when the 
temperature is above or well below the optical-phonon 
temperature. In the low-temperature regime, the energy-
conserving processes, which involve the absorption of the 
minimum amount of vibrational energy, provide the 
dominant contribution to the thermally activated jump 
rates. At sufficiently high temperatures, the multi-phonon 
processes dominate the transitíon rate; the high-
temperature jump rates are also activated, although with a 
different activation energy than that which characterizes 
the low-temperature regime. In the complementary weak-
coupling regime, the jump rate is characterized by the 
dominance of those processes which involve the 
absorption or emission of the minimum number of 
phonons consistent with the requirements of energy 
conservation. Once again two distinct temperature 
domains manifest themselves: a low-temperature, 
thermally activated, regime and a high-temperature, non-
activated, regime. Emin calculated the hopping rates due 
to multi-phonon effects as a lattíce-relaxation phase shift. 
As can easily be seen, the MN energy depends on InS, 
whereas, the hopping rate depends upon exp(-S). 
Emin´s calculatins give the prediction that 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

MN

o

E
h

r
ν

σ expln 00  (25b) 

 
Here it has been assumed that r is a constant. Yelon 

and Movaghar have found r = -9.8 and hνo = 78.2 meV for 
the best fit of Eq. (25) to the data of Ref.  [32-34]. They 
observed that the deviation of the data from this fit is very 
similar to that of Eq. (5), which also has two adjustable 
parameters 

 
5.  Futher MNR from the point of view of the  
      barrier-cluster model 
 
5.1  Basic idea    
 
The phenomenon for which the “further MNR” 

applies is caused – we believe – by the strong absorption 
of the phonons (that we characterize by the same value of 
energy) by the free electrons having energies in a low-
mobility sub-band of the conduction band. The transport 
of electrons in this sub-band is via the tunneling across 
potential-energy barriers (Figs. 1, 2). The absorption of 
phonons by these electrons implies that electrons jump on 
higher energy levels at which the tunneling probability is 
enhanced. This means a remarkable enhancement of the 
mobility of the electrons. Having in mind disordered 
semiconductors, we will present a mathematical derivation 
of their electrical conductivity. As we will show, our final 
result for the electrical conductivity agrees well with the 
empirical “further MNR”. 

NOTE: The free electrons in the low-mobility sub-
band interact strongly with phonons right owing to the 
presence of the barriers. Hence we may state that the 
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considerable absorption of the mono-energy phonons is of 
the “recombination type”. 

 
5.2  Derivation of an expression correspon-ding to  
       the “further NMR” 
 
Let us consider an electron with an initial energy E1 

(Fig. 3).  It can tunnel with this energy through a parabolic 
barrier with a probability p1. When a phonon with the 
energy ΔE = E2 - E1 is absorbed, the electron is excited on 
the energy level E2. The greater tunneling probability in 
the low-mobility sub-band (below the top of the barriers) 
causes an enhancement of the electron mobility and then 
also of the electrical conductivity. Formally it implies an 
enhancement of the value of σ00 in expression (4) from the 
initial value σ00 to the value σ´

00 > σ00. 
With the usual MNR (not with the “further NMR”), 

the formula for the conductivity reads 
 
 σ ~ σoo exp(W/kTo) exp(-W/kT)  (26) 

 
When phonons are absorbed, the value of the electron 
mobility becomes higher, and the formula for the electrical 
conductivity should read 

 
 σ´ ~ σ´oo exp(W/kTo) exp(-W/kT)  (27) 

 
with σ´

 >  σ.  We will show that 
 

 [ ]EAfΔ=′ exp0000 σσ  (28) 
 
or 

 EAfΔ+=′ 0000 lnln σσ  (29) 
 
where f is a constant, A-constant characterizing the 
parabolic barrier, and ΔE is the energy of the absorbed 
phonon.     
 

 
Fig. 3  The parabolic potential   barrier 

 
 
It follows from relations (14, 22b) that 
 

 ΔE =  2ε1kT0 = 2ε1EMN  (30) 
  
where EMN = kT0 is the Meyer-Neldel energy. From 
relations (14, 22b), we obtain the formuls 
 

 MNEAf 10000 2lnln εσσ +=′  (31) 

or, if we employ the denotation p = lnσ00,  q = 2Afε1  
 

 MNqEp +=′00lnσ  (32) 
 
This formula isidentical with the mathematical expression 
of the “further MNR” (5). 
 
 
 
 

5.3   Derivation of the auxiliary relation (28) 
  
Tunneling through the parabolic potential energy  
Barrier 
 
In the case of a parabolic barrier (Fig. 3), the dependence 

of the potential energy W(x) of an electron on its position can 
be expressed as 

 
 oWaxxW +−= 2)(  (33) 

 
where Wo  is the height of the barrier measured from the 
bottom of the conduction band and a is the "narrowness" 
of the barrier. If W(x) is inserted into the semi-classical 
formula for the tunnelling probability of a particle, one 
obtains [35-46] 
 

 )exp(~)( WAp Δ−ε  (34) 
 
where 
 

 
a
mA 2

h

π
−= ,       ε−=Δ oWW   (35) 

 
and m  is the mass of the tunnelling electron. The quantity 
ε is the energy of the tunnelling particle measured with 
respect to the bottom of the conduction band (Fig. 3).  

If the average energy of electrons is increased – as we 
can suppose - proportionaly to the ΔE (by fΔE, f is 
a constant), the value of the parameter ΔW decreases to the 
value ΔW – fΔE. The tunneling probability is changed 
from the value p top the value p': 
 ( )WAp Δ−exp~  (36) 
 ( )[ ]EfWAp Δ−Δ−′ exp~   (37) 
 

The change of the mobility of carriers 
 
The change of the tunneling probability means that 

correspondingly the mobility of the carriers is changed 
from μ to μ ′  

 
 

p
p′

=
′

=
′

μ
μ

σ
σ

00

00  (38) 

 
so that 
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 ( )WAΔ−exp~μ  (39a) 
 

 ( )[ ] [ ]EAfEfWA Δ=Δ−Δ−′ expexp~ μμ  (39b) 
 
It follows from relations (36-38) that 
 

 [ ]EAfΔ=′ exp0000 σσ   (40) 
 

This expression is identical with expression (28). 
Thus, we may state that relation (32), corresponding to the 
“further MNR”, has been proved. 
 
 

6. Remarks: The MNR in modern era 
 
Pichon et al. [53] have reported an interesting 

technological application of the  MNR. According to their 
analysis, the Meyer-Neldel effect in the sub-threshold 
region of thin-film transistor active layer could be a 
diagnostic tool to quantify  the quality of the active layer. 
The implication of fhe Meyer-Neldel behavior for 
oxidizing gas detection in phthalocyanine thin films was 
proposed by Goldie [54]. Widenhorn et al. [55] have 
explained the temperature dependence of the forward 
current of a silicon diode in terms of the MNR. They have 
demonstrated that a real diode follows the MNR. It is 
shown that MNR is due to a shift of the current from ideal-
diode to a high-injection-diode behavior. 

Takechi et lal. [56] suggested that an exponential tail-
state distribution  model combined with the MNR can be 
used to describe the sub-threshold characteristics of 
amorphous InGaZn04 thin-film transistors (a-IGZO TFTs). 

Most recently Ielmimi et al. [57] reported that the 
structural relaxation and crystallization in phase-change 
memory (PCM) devices could be interpreted by the MNR 
allowing for: (a) the development of a new temperature 
dependent analytical model for the structural relaxation 
and (b) a unified interpretation of the structural relaxation 
and crystallization, with a physical ínterpretation of the 
pre-exponential Arrhenius time by many-phonon thermal 
excitation. Similarly, Savransky and Yelon [58] reported 
the interpretation and consequences of the MNR for 
conductívity of a large number of memory cells of a 
GeSbTe phase-change memory alloy. 

Okamoto et al. [59] derived universal MNR in the 
reciprocal temperature domain on the basis of the Laplace 
transform representation of thermally activated quantities, 
by a mathematical analogy with the generalized Kramers-
Kronig relations in an adequate frequency interval. If the 
MNR bears universality, it should originate from certain 
mathematical grounds, similarly. as the Kramers-Kronig 
relations link the real and imaginary parts of the complex 
susceptibility. Okamoto et al. tried to pursue the 
generalized MN relations in terms of the Laplace 
transform. They demonstrated that it appears in the limited 
temperature region specific to each physical system, when 
some realistic conditions are guaranteed.    

NOTE: In review [60] the new observations in MNR 
are discussed in case of chalcogenide glasses. 

7.  Conclusions 
 
In this paper we have presented a clarification of the 

Meyer-Neldel rule and of the “further Meyer-Neldel rule” 
employing our barrier-cluster model. 

We can explain the validity of the Meyer-Neldel rule 
in non-crystalline semiconductors by assuming that 
recombination transition of an electron from conduction to 
valence band is conditioned by emission of a number of 
equi-energy phonons whose total energy corresponds to 
the width of the forbidden band (and so to the energy 
released in the transition). The probability of such a 
complex process is determined by the number of emitted 
phonons. This probability exponentially decreases with 
increasing the number of phonons and consequently with 
the width of  the forbidden band. The probability of 
recombination influences on the concentration of free 
electrons in the conduction band and subsequently on the 
electric conductivity. Using these ideas, we have obtained 
a relation equivalent to the Meyer-Neldel rule. 

We suppose that the validity of the further MNR may 
be explained within the framework of our barrier-cluster 
model when we realize that the equi-energy phonons that 
are produced during the recombination process are 
strongly absorbed by free electrons in the low-mobility 
sub-band of the conduction band. The transport of 
electrons with energies near the lower edge of the 
conduction band takes place via tunnelling across 
potential-energy barriers. When the phonons are absorbed, 
electrons are excited to higher energy levels. This implies 
a considerable enhancement of the electrical conductivity. 
This enhancement corresponds well with the empirical 
relation known as the further NMR. 

This result suggests that the barrier-cluster model that 
was introduced by the author and that was employed 
successfully in the clarification of the optical absorption, 
electro-absorption, photocon-ductivity and 
photoluminescence appears to be generally adequate. The 
barrier-cluster model seems also to explain why it was 
difficult to identify reliably the exponential tails of the 
state density if they penetrate deeply into the forbidden 
gap. The existence of clusters in chalcogenide glasses 
enables to clarify some results of X-ray and EPR studies. 
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